Succinct Representations (BDDs and SAT)

CS60030 FORMAL SYSTEMS

PALLAB DASGUPTA,

FNAE, FASC,
A K Singh Distinguished Professor in Al, Dept of Computer Science \& Engineering Indian Institute of Technology Kharagpur Email: pallab@cse.iitkgp.ac.in Web: http:I/cse.itkgp.ac.in/~pallab

Set Membership versus Boolean Functions

- Suppose state variables are x_{1}, x_{2}, x_{3} and states are encoded as $\left\langle x_{1} x_{2} x_{3}\right\rangle$
- Consider the set of states: $S=\{000,010,011,100,101\}$
- Boolean membership function for $\mathrm{S}: ~ f\left(x_{1}, x_{2}, x_{3}\right)=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}$
- Why use Boolean functions to represent state sets?
- Because Boolean functions can be minimized
- Often size of a circuit is logarithmic in the number of minterms
- $f\left(x_{1}, x_{2}, x_{3}\right)=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}=\bar{x}_{1} \bar{x}_{3}+\bar{x}_{1} x_{2}+x_{1} \bar{x}_{2}$

Representations of Boolean Functions

- Disjunctive Normal Form (Sum of minterms)

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\bar{x}_{1} \bar{x}_{3}+\bar{x}_{1} x_{2}+x_{1} \bar{x}_{2}
$$

- Checking satisfiability is easy, checking validity is hard
- Conjunctive Normal Form (Product of clauses)

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\left(\bar{x}_{1}+\bar{x}_{3}\right)\left(\bar{x}_{1}+x_{2}\right)\left(x_{1}+\bar{x}_{2}\right)
$$

- Checking validity is easy, checking satisfiability is har
- Translation between CNF and DNF is computationally hard

Converting a Circuit to SAT

A circuit describes the relationship (constraints) between its nets
$\mathrm{p}=\mathrm{q}$ can be written as $(\boldsymbol{p}+\overline{\boldsymbol{q}})(\overline{\boldsymbol{p}}+\boldsymbol{q})$
CLAUSE FORM:
The circuit functionality is: $(x=\bar{a})(y=\bar{b})(z=x y c)$ which may be rewritten as:

$$
(x+a)(\bar{x}+\bar{a})(y+b)(\bar{y}+\bar{b})(z+\bar{x}+\bar{y}+\bar{c})(\bar{z}+x)(\bar{z}+y)(\bar{z}+c)
$$

Typically the number of clauses for a circuit is much smaller than 2^{n} (the number of rows in the truth table).

Binary Decision Diagrams (BDDs)

Graphical representation [Lee, Akers, Bryant]

- Efficient representation \& manipulation of Boolean functions in many practical cases
- Enables efficient verification/analysis of a large class of designs
- Worst-case behavior still exponential

Example: $f=\left(x_{1} \wedge x_{2}\right) \vee \neg x_{3}$

- Represent as binary tree
- Evaluating f:
- Start from root
- For each vertex labeled x_{i}
- take dotted branch if $x_{i}=0$
- else take solid branch

Binary Decision Diagrams (BDDs)

Underlying principle: Shannon decomposition

- $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \wedge f\left(1, x_{2}, x_{3}\right) \vee \neg x_{1} \wedge f\left(0, x_{2}, x_{3}\right)$

$$
=x_{1} \wedge\left(x_{2} \vee \neg x_{3}\right) \vee \neg x_{1} \wedge(\neg x 3)
$$

- Can be applied recursively to $f\left(1, x_{2}, x_{3}\right)$ and $f\left(0, x_{2}, x_{3}\right)$
- Gives tree
- Extend to n arguments

Number of nodes can be exponential in number of variables

Restrictions on BDDs

Ordering of variables

- In all paths from root to leaf, variable labels of nodes must appear in a specified order

Reduced graphs

- No two distinct vertices must represent the same function
- Each non-leaf vertex must have distinct children

Not a ROBDD !

REDUCED ORDERED BDD (ROBDD): Directed Acyclic Graph

ROBDDs

- Unique (canonical) representation of f for given ordering of variables
- Checking $\mathrm{f} 1=\mathrm{f} 2$ reduces to checking if ROBDDs are isomorphic
- Shared subgraphs: size reduction
- Every path doesn't have all labels x1, x2, x3
- Every non-leaf vertex has a path to 0 and 1

Variable Ordering Problem

$$
f=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}
$$

Order: $\mathrm{x}_{1}<\mathrm{x}_{3}<\mathrm{x}_{5}<\mathrm{x}_{2}<\mathrm{x}_{4}<\mathrm{x}_{6}$

Order: $\mathrm{x}_{1}<\mathrm{x}_{2}<\mathrm{x}_{3}<\mathrm{x}_{4}<\mathrm{x}_{5}<\mathrm{x}_{6}$

Variable Ordering Problem

ROBDD size

- Extremely sensitive to variable ordering
- $f=x_{1} x_{2}+x_{3} x_{4}+\ldots+x_{2 n-1} x_{2 n}$
- $2 n+2$ vertices for order $x_{1}<x_{2}<x_{3}<x_{4}<\ldots x_{2 n-1}<x_{2 n}$
- 2^{n+1} vertices for order $x_{1}<x_{n+1}<x_{2}<x_{n+2}<\ldots x_{n}<x_{2 n}$
- $f=x_{1} x_{2} x_{3} \ldots x_{n}$
- $n+2$ vertices for all orderings
- Exponential regardless of variable ordering
- Most significant bit of product of n-bit integer multiplier [Bryant]

Determining best variable order for arbitrary functions is computationally intractable

- Heuristics: Static ordering, Dynamic ordering

Variable Ordering Solutions

Dynamic ordering

- Starts with user-provided static order
- If dynamic re-ordering triggered on-the-fly, evaluate benefits of re-ordering small subset of variables
- If beneficial, re-order and repeat until no benefit
- Expensive in general, sophisticated triggers essential
- Key observation [Friedman]: Given ROBDD with $x_{1}<\ldots x_{i}<x_{i+1}<\ldots x_{n}$,
- Permuting $x_{1} \ldots x_{i}$ has no effect on ROBDD nodes labeled by $x_{i+1} \ldots x_{n}$
- Permuting $x_{i+1} \ldots x_{n}$ has no effect on ROBDD nodes labeled by $x_{1} \ldots x_{i}$
- Variables in adjacent levels easily swappable

How to use a BDD package

$f(x, a, b, c, z)=(x+a)(\bar{x}+\bar{a})(y+b)(\bar{y}+\bar{b})(z+\bar{x}+\bar{y}+\bar{c})(\bar{z}+x)(\bar{z}+y)(\bar{z}+c)$

- Create a BDD manager
- Create BDDs of sub-functions and then the functions

$$
\begin{aligned}
& \text { bdd1 = Cudd_bddOr(gbm, x, a); } \\
& \text { bdd2 = Cudd_bddOr(gbm, y, b); } \\
& \text { bdd3 = Cudd_bddAnd(gbm, bdd1, bdd2); } \\
& \text {... and so on. }
\end{aligned}
$$

- More to be discussed during hands-on sessions

BDD Operations

- All logical operations - AND, OR, NOT, etc.
- Validity Checking: The BDD of a valid function reduces to the single node 1
- Satisfiability Checking: The BDD of an unsatisfiable function reduces to the single node 0
- Variable Quantification:

- Restrict operation: Effect of setting function argument x_{i} to constant k (0 or 1).
- Also called Cofactor operation

Basics of Finite State Systems

Transition Relation:
$\mathrm{g}_{1}^{\prime} \Leftrightarrow \mathrm{r}_{1}$
$\mathrm{g}_{2}^{\prime} \Leftrightarrow \neg \mathrm{r}_{1} \wedge \mathrm{r}_{2} \wedge \neg \mathrm{~g}_{1}$
Initial State: $r_{1}=0, r_{2}=0, g_{1}=0, g_{2}=1$

PS $g_{1} g_{2}$	I / P $r_{1} r_{2}$	NS $\mathrm{g}_{1}^{\prime} \mathrm{g}^{\prime}{ }_{2}$
00	00	00
00	01	01
00	10	10
00	11	10
01	00	00
01	01	01
01	10	10
01	11	10
10	00	00
10	01	00
10	10	10
10	11	10
11	00	00
11	01	00
11	10	10
11	11	10

Open Systems versus Non-Deterministic Closed Systems

The next input is non-deterministic

The input is part of the state. Since the next input is not known we have a non-deterministic state machine.

PS $\mathrm{g}_{1} \mathrm{~g}_{2}$	I / P $\mathrm{r}_{1} \mathrm{r}_{2}$	NS $\mathrm{g}_{1}{ }_{1}^{\prime} \mathrm{g}_{2}$	Next I / P
00	00	00	xx
00	01	01	xx
00	10	10	xx
00	11	10	xx
01	00	00	xx
01	01	01	xx
01	10	10	xx
01	11	10	xx
10	00	00	xx
10	01	00	xx
10	10	10	xx
10	11	10	xx
11	00	00	xx
11	01	00	xx
11	10	10	xx
11	11	10	xx

The complete transition relation

Transition Relation:
 $\mathrm{g}_{1} \Leftrightarrow \mathrm{r}_{1}$ $\mathrm{~g}_{2}^{\prime} \Leftrightarrow \neg \mathrm{r}_{1} \wedge \mathrm{r}_{2} \wedge \neg \mathrm{~g}_{1}$

Initial State:
$r_{1}=0, r_{2}=0, g_{1}=0, g_{2}=1$

PS $\mathrm{g}_{1} \mathrm{~g}_{2}$	$\mathrm{I} / \mathrm{P} \mathrm{r}_{1} \mathrm{r}_{2}$	NS $\mathrm{g}_{1}{ }^{\prime} \mathrm{g}^{\prime}{ }_{2}$	Next I P
00	00	00	xx
00	01	01	xx
00	10	10	xx
00	11	10	xx
01	00	00	xx
01	01	01	xx
01	10	10	xx
01	11	10	xx
10	00	00	xx
10	01	00	xx
10	10	10	xx
10	11	10	xx
11	00	00	xx
11	01	00	xx
11	10	10	xx
11	11	10	xx

State Labels: Propositions

$\mathrm{p}: \mathrm{g}_{1} \wedge \mathrm{~g}_{2}$
The states in the yellow box are labeled with p
$q: r_{1}=g_{1}$
The states labeled with q are 0000, 0001, 0100, 0101, 1010, 1011, 1110, 1111

PS $\mathrm{g}_{1} \mathrm{~g}_{2}$	I / P $\mathrm{r}_{1} \mathrm{r}_{2}$	NS $\mathrm{g}_{1}^{\prime} \mathrm{g}^{\prime}{ }_{2}$	Next I / P
00	00	00	xx
00	01	01	xx
00	10	10	xx
00	11	10	xx
01	00	00	xx
01	01	01	xx
01	10	10	xx
01	11	10	xx
10	00	00	xx
10	01	00	xx
10	10	10	xx
10	11	10	xx
11	00	00	xx
11	01	00	xx
11	10	10	xx
11	11	10	xx

Succinct representation of State Machines

- Sequential functions: Combinational logic + Flip flops
- The combinational logic represents the transition relation

Transition Relation:
$g_{1}^{\prime} \Leftrightarrow r_{1}$
$\mathrm{g}_{2}^{\prime} \Leftrightarrow \neg \mathrm{r}_{1} \wedge \mathrm{r}_{2} \wedge \neg \mathrm{~g}_{1}$

The notion of Characteristic Functions

x	y	c	z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$f(z)=x y c$
The characteristic function $c f(z, x, y, c) \equiv(z=x y c)$
Therefore:

$$
c f(z, x, y, c)=(z+\bar{x}+\bar{y}+\bar{c})(\bar{z}+x)(\bar{z}+y)(\bar{z}+c)
$$

x	y	c	z	$C F$
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Characteristic functions for transition relations

Transition Relation:

$$
\begin{aligned}
& g_{1}^{\prime} \Leftrightarrow r_{1} \\
& g_{2}^{\prime} \Leftrightarrow \neg r_{1} \wedge r_{2} \wedge \neg g_{1}
\end{aligned}
$$

$$
\begin{aligned}
& c f 1\left(r_{1}, g_{1}^{\prime}\right)=\left(\bar{r}_{1}+g_{1}^{\prime}\right)\left(r_{1}+\bar{g}_{1}^{\prime}\right) \\
& \begin{aligned}
& \boldsymbol{c f} 2\left(r_{1}, r_{2}, g_{1}, g_{2}^{\prime}\right)=\left(g_{2}^{\prime}+r_{1}+\bar{r}_{2}+g_{1}\right)\left(\bar{g}_{2}^{\prime}+\bar{r}_{1}\right)\left(\bar{g}_{2}^{\prime}+r_{2}\right)\left(\bar{g}_{2}^{\prime}+\bar{g}_{1}\right) \\
& \boldsymbol{c f}\left(r_{1}, r_{2}, g_{1}, g_{2}, g_{1}^{\prime}, g_{2}^{\prime}\right)=\boldsymbol{c f} \mathbf{1}\left(r_{1}, g_{1}^{\prime}\right) \wedge \boldsymbol{c f} 2\left(r_{1}, r_{2}, g_{1}\right) \\
&=\left(\bar{r}_{1}+g_{1}^{\prime}\right)\left(r_{1}+\bar{g}_{1}^{\prime}\right)\left(g_{2}^{\prime}+r_{1}+\bar{r}_{2}+g_{1}\right)\left(\bar{g}_{2}^{\prime}+\bar{r}_{1}\right)\left(\bar{g}_{2}^{\prime}+r_{2}\right)\left(\bar{g}_{2}^{\prime}+\bar{g}_{1}\right)
\end{aligned}
\end{aligned}
$$

Using BDDs

Transition Relation:

$$
g_{1}^{\prime} \Leftrightarrow r_{1}
$$

$$
\mathrm{g}_{2}^{\prime} \Leftrightarrow \neg \mathrm{r}_{1} \wedge \mathrm{r}_{2} \wedge \neg \mathrm{~g}_{1}
$$

What can we do using CF of transition relation?

EXERCISE: Use the characteristic function for the transition relation to answer the following:

- Is there a transition from a state at which both requests, r 1 and r 2 , are high to a state at which g 2 is high?
- Can g1 ever be high for two consecutive cycles?
- Can g1 ever be high for three consecutive cycles?
- If g 2 is high, does in mean r2 was high in one of the previous two cycles?

State Explosion and Succinct Representations

- The number of states in a circuit is a product of the number of states in its components (exponential growth)

M1

M2

M1 X M2

- The size of BDDs grow exponentially with the number of variables.
- There are model checking techniques which use partitioned transition relations
- The complexity of solving a SAT instance grows exponentially with the number of clauses.
- But modern SAT solvers are good at solving millions of clauses in less than a second
- Techniques to overcome the state explosion problem
- Abstractions, Assume-Guarantee, Induction

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

